
An Expanded Guide to
GitHub Best Practices

Do you use GitHub? Implementing these
best practices could save you time,
improve developer productivity, and
reduce security risks.

Last updated: Dec 2019

Written by:

Eyar Zilberman
Elliott Bonneville

Introduction

2

GitHub Best Practices

We interviewed hundreds of software developers to understand
their development workflows and how they work with GitHub. Using
our own product, we also scanned thousands of GitHub repositories
for our customers.

This list of GitHub best practices is derived from the insights we
gleamed from those experiences.

These best practices are still applicable even if you use something
other than GitHub for source control, because they’re all about
improving code quality, security, and writing good code.

How we created this guide

This guide is for anyone in the Engineering organization looking to
improve developer workflow and productivity, as well as code quality
and security.

Those responsible for putting together team-wide standard practices
and policies would benefit greatly from this guide, but even if you’re
a developer not “in charge” of driving such standards, you will find
these practices applicable and useful to remember.

Who this guide is for

GitHub Best Practices

Regardless if you use Gitflow or any other git branching model, it is always a
good idea to enable git branch protection to prevent direct commits and
ensure your main branch code is deployable at all times. All commits should
be pushed to master through pull requests.

Don’t git push straight to master

GitHub Best Practices

00

4

Sometimes you commit code using the wrong email address, and as a
result, GitHub shows that your commit has an unrecognized author. Having
commits with unrecognized authors makes it more difficult to track who
wrote which part of the code.

Don’t commit code as an unrecognized
author

11

https://nvie.com/posts/a-successful-git-branching-model/
https://help.github.com/en/github/administering-a-repository/configuring-protected-branches
https://help.github.com/articles/why-are-my-commits-linked-to-the-wrong-user/

Ensure your Git client is configured with the correct email address and
linked to your GitHub user. Check your pull requests during code reviews for
unrecognized commits.

GitHub Best Practices

4

When you’re working with dozens, hundreds, or more repositories and
engineers, it’s nearly impossible to know who owns which parts of the
codebase. Even in smaller teams you’d still have code owners – for example,
front-end code changes should be reviewed by the Front-End Engineer.

Use Code Owners feature to define which teams and people are
automatically selected as reviewers for the repository.

Define code owners in your codebase22

https://help.github.com/articles/setting-your-commit-email-address-in-git/
https://help.github.com/articles/about-codeowners/

5

Secrets, or secret keys or secret credentials, include things like account
passwords, API keys, private tokens, and SSH keys. You should not check
them into your source code.

Instead, we recommend you inject secrets as environment variables
externally from a secure store. You can use tools like Hashicorp Vault or
AWS Secrets Manager to do this.

There are many tools for scanning secrets in repos and prevent them from
getting into repos:

• Git-secrets can help you to identify passwords in your code.

• Git hooks can be used to build a pre-commit hook and check every pull
request for secrets.

• Datree has a predefined policy rule for this.

Read this tutorial or watch this video for a more detailed explanation on why
you should manage secrets this way and how to do it right.

GitHub Best Practices

Don’t let secrets leak into source control33

https://www.vaultproject.io/
https://aws.amazon.com/secrets-manager/
https://github.com/awslabs/git-secrets
https://githooks.com/
https://docs.datree.io/docs/do-not-include-secret-files
https://datree.io/secrets-management-aws/
https://pages.datree.io/managing-secrets-in-git

6

GitHub Best Practices

Don’t commit dependencies into source code44

Pushing dependencies into your remote origin will increase repository size.
Remove any projects dependencies included in your repositories and let
your package manager download them in each build.

If you are afraid of “dependencies availability” you should consider using a
binary repository manager solution like Jfrog or Nexus Repository. Or check
out GitHub’s Git-Sizer.

Don’t commit config files into source code55

We strongly recommend against committing your local config files to version
control. Usually, those are private configuration files you don’t want to push
to remote because they are holding secrets, personal preferences, history or
general information that should stay only in your local environment.

Create a meaningful git ignore file66

A .gitignore file is a must in each repository to ignore predefined files and
directories. It will help you to prevent secret keys, dependencies and many
other possible discrepancies in your code. You can choose a relevant
template from Gitignore.io to get started quickly.

https://jfrog.com/
https://www.sonatype.com/nexus-repository-sonatype
https://github.com/github/git-sizer
https://www.gitignore.io/

6

GitHub Best Practices

Archive dead repositories77

Over time, for various reasons, we find ourselves with unmaintained
repositories. Sometimes developers create repos for an ad hoc use case, a
POC, or some other reason. Sometimes they inherit repos with old and
irrelevant code.

In any case, these repos were left intact. No one is doing any development
work in those repos anymore, so you want to clean them up and avoid the
risk of other people using them. The best practice is to archive them, i.e.
make them “read-only” to everyone.

6

GitHub Best Practices

Lock package versions88

Your manifest file contains information about all packages and
dependencies in your project and their versions.

The best practice is to specify a version or version range for every package
and dependency listed in the manifest.

Otherwise, you can’t be sure which version will get installed during the next
build, and consequently your code may break.

6

GitHub Best Practices

Specify standard package versions99

Even when everyone on your team are using the same packages, reusing
code and tests across different projects can still be difficult if the packages
are of different versions.

If you have a package that is used in multiple projects, try at a minimum to
use the same major version of the package.

Leverage tasks list1010

Tasks lists provide a way for you to track to-dos directly within comments,
issues, and even MarkDown files (*.MD) within your repository (users must
have write access to the repository to make changes to MarkDown files).

Tasks lists provide an excellent way to capture a high-level overview of a task
or issue, as well as keep others updated on its state. Make sure to take
advantage of this powerful new feature!

6

GitHub Best Practices

Use branch naming convention1111

Adopting a consistent branch naming convention is essential to keeping
your repository organized as your team grows in size. An efficient naming
convention will allow you to keep merge conflicts at a minimum while
ensuring your developers are as productive as possible.

While there are many branch naming conventions, one of the most popular
ones is known as git flow:

Image credit: Vincent Driessen, nvie.com

https://nvie.com/posts/a-successful-git-branching-model/

6

GitHub Best Practices

Delete stale branches1212

Every time one branch is merged into another, the branch that is merged in
becomes stale, assuming further work isn’t being done in it.

While it may seem useful or even necessary to keep the extra data on hand,
the reality is that stale branches are abandoned 98% of the time and simply
clutter up your project.

Even if you delete a branch when you shouldn’t have, you can restore it -
and if you don’t trust GitHub’s restore feature, chances are it’s safe on
somebody’s computer, thanks to the magic of distributed versioning.

Don’t be a branch hoarder: delete your stale branches.

6

GitHub Best Practices

Keep branches up to date1313

Let’s say you’ve finally completed some work on a long-outstanding branch
and you’re ready to merge it into master. You pull from remote, hit merge,
and suddenly you’re faced with a barrage of merge conflicts.

What happened?

You failed to keep your branch up-to-date with the branch you’re attempting
to merge into. Lots of commits went by and some conflicted with your
changes... now you’re faced with spending time and energy resolving an
unnecessary amount merge conflicts.

The best practice here is to ensure that you’re consistently merging your
base branch into your current branch as you work, especially if it’s a long-
outstanding branch.

Remove inactive GitHub members1414

While it might seem obvious, it’s worth mentioning in a comprehensive list
of best practices... Be sure to remove contributors from your organization
that are no longer contributing to your codebase.

If you remove somebody from your organization for any reason, revoke
their GitHub access immediately as well. Even in completely amicable
situations, it’s better safe than sorry!

6

GitHub Best Practices

Enable security alerts1515

Security alerts are another feature new to GitHub. You can read about them
here, but the gist is that GitHub now tracks reported security vulnerabilities
in some dependencies and will even suggest fixes for you.

This is turned on automatically for all public repositories, but if your
repository is private, you’ll need to opt in manually.

https://help.github.com/en/github/managing-security-vulnerabilities/about-security-alerts-for-vulnerable-dependencies

Conclusion

12

Developers spend a lot of time working with git and GitHub, so investing in
improving your GitHub practices makes a lot of sense. Implementing best
practices in this guide could help the team improve developer productivity
and reduce security risks.

GitHub Best Practices

Ensuring consistent adoption of best practices could be very challenging,
especially in fast-growing or large teams.

The ways people try to solve this problem, like writing down policies in a
shared document or wiki, sending mass emails from time to time to entire
teams, Slacking them in the team channel, or hoping code reviews will catch
everything, are not consistently effective – let alone scalable.

Whether you decide to build in-house or use a purpose-built commercial
tool, investing in automating best practice adoption is a good idea and will
help you prevent costly mistakes.

Final Thoughts

About Datree

Datree helps teams automatically adopt development
best practices, coding standards, and security policies.

It does that by performing automated GitHub checks
that run like your CI tests.

Every time new code is committed, Datree checks if the
rules you've set are followed - and tells the developer
when they aren't.

Sign up for free

https://datree.io/

